Moduli Space of Self-Dual Gauge Fields, Holomorphic Bundles and Cohomology Sets
نویسنده
چکیده
We discuss the twistor correspondence between complex vector bundles over a self-dual four-dimensional manifold and holomorphic bundles over its twistor space and describe the moduli space of self-dual Yang-Mills fields in terms of Čech and Dolbeault cohomology sets. The cohomological description provides the geometric interpretation of symmetries of the self-dual Yang-Mills equations.
منابع مشابه
2 Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles
A central object of study in gauge theory is the moduli space of unitary flat connections on a compact surface. Thanks to the efforts of many people, a great deal is understood about the ring structure of its cohomology. In particular, the ring is known to be generated by the so-called universal classes [2, 36], and, in rank 2, all the relations between these classes are also known [3, 27, 40, ...
متن کاملA Remark on the Douady Sequence for Non-primary Hopf Manifolds
1. Introduction. To determine cohomology groups of holomorphic vector bundles or more general coherent analytic sheaves on complex manifolds is very important in several complex variables and complex geometry. For example, Cartan-Serre's theorem B and Kodaira's vanishing theorem are fundamental respectively in the studies of two classes of complex manifolds: Stein manifolds and projective algeb...
متن کاملGlobal Aspects Of Gauged Wess-Zumino-Witten Models
A study of the gauged Wess-Zumino-Witten models is given focusing on the effect of topologically non-trivial configurations of gauge fields. A correlation function is expressed as an integral over a moduli space of holomorphic bundles with quasi-parabolic structure. Two actions of the fundamental group of the gauge group is defined: One on the space of gauge invariant local fields and the other...
متن کاملUniversal moduli spaces of surfaces with flat bundles and cobordism theory
For a compact, connected Lie group G, we study the moduli of pairs (Σ,E), where Σ is a genus g Riemann surface and E →Σ is a flat G-bundle. Varying both the Riemann surface Σ and the flat bundle leads to a moduli space Mg , parametrizing families Riemann surfaces with flat G-bundles. We show that there is a stable range in which the homology of Mg is independent of g. The stable range depends o...
متن کاملModuli Spaces of Bundles over Riemann Surfaces and the Yang–Mills Stratification Revisited
Refinements of the Yang–Mills stratifications of spaces of connections over a compact Riemann surface Σ are investigated. The motivation for this study is the search for a complete set of relations between the standard generators for the cohomology of the moduli spaces M(n, d) of stable holomorphic bundles of rank n and degree d when n and d are coprime and n > 2. The moduli space M(n, d) of se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999